The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif.

نویسندگان

  • Steven M Walker
  • Nick R Leslie
  • Nevin M Perera
  • Ian H Batty
  • C Peter Downes
چکیده

The PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour-suppressor protein is a phosphoinositide 3-phosphatase which antagonizes phosphoinositide 3-kinase-dependent signalling by dephosphorylating PtdIns(3,4,5)P3. Most tumour-derived point mutations of PTEN induce a loss of function, which correlates with profoundly reduced catalytic activity. However, here we characterize a point mutation at the N-terminus of PTEN, K13E from a human glioblastoma, which displayed wild-type activity when assayed in vitro. This mutation occurs within a conserved polybasic motif, a putative PtdIns(4,5)P2-binding site that may participate in membrane targeting of PTEN. We found that catalytic activity against lipid substrates and vesicle binding of wild-type PTEN, but not of PTEN K13E, were greatly stimulated by anionic lipids, especially PtdIns(4,5)P2. The K13E mutation also greatly reduces the efficiency with which anionic lipids inhibit PTEN activity against soluble substrates, supporting the hypothesis that non-catalytic membrane binding orientates the active site to favour lipid substrates. Significantly, in contrast to the wild-type enzyme, PTEN K13E failed either to prevent protein kinase B/Akt phosphorylation, or inhibit cell proliferation when expressed in PTEN-null U87MG cells. The cellular functioning of K13E PTEN was recovered by targeting to the plasma membrane through inclusion of a myristoylation site. Our results establish a requirement for the conserved N-terminal motif of PTEN for correct membrane orientation, cellular activity and tumour-suppressor function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional analysis of the protein phosphatase activity of PTEN

In vitro, the tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) displays intrinsic phosphatase activity towards both protein and lipid substrates. In vivo, the lipid phosphatase activity of PTEN, through which it dephosphorylates the 3 position in the inositol sugar of phosphatidylinositol derivatives, is important for its tumour suppressor function; however, th...

متن کامل

Tumor suppressor PTEN acts through dynamic interaction with the plasma membrane.

The tumor suppressor function of PTEN is strongly linked to its ability to dephosphorylate phosphatidylinositol-3,4,5 trisphosphate and, thereby, control cell growth, survival, and migration. However, the mechanism of action of PTEN in living cells is largely unexplored. Here we use single-molecule TIRF microscopy in living cells to reveal that the enzyme binds to the membrane for a few hundred...

متن کامل

Analysis of the cellular functions of PTEN using catalytic domain and C-terminal mutations: differential effects of C-terminal deletion on signalling pathways downstream of phosphoinositide 3-kinase.

The tumour suppressor protein, PTEN (phosphatase and tensin homolog deleted on chromosome 10), is a phosphatase that can dephosphorylate tyrosine-containing peptides, Shc, focal adhesion kinase and phosphoinositide substrates. In cellular assays, PTEN has been shown to antagonize the PI-3K-dependent activation of protein kinase B (PKB) and to inhibit cell spreading and motility. It is currently...

متن کامل

The intrinsically disordered tails of PTEN and PTEN-L have distinct roles in regulating substrate specificity and membrane activity

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase, and both activities are necessary for its role as a tumour suppressor. PTEN activity is controlled by phosphorylation of its intrinsically disordered C-terminal tail. A recently discovered variant of PTEN, PTEN-long (PTEN-L), has a 173-residue N-terminal extension that causes PTEN-L to exhibit u...

متن کامل

A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN.

The PI 3-phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10), one of the most important tumor suppressors, must associate with the plasma membrane to maintain appropriate steady-state levels of phosphatidylinositol 3,4,5-triphosphate. Yet the mechanism of membrane binding has received little attention and the key determinants that regulate localization, a phosphatidylin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 379 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004